
Continuous Monitoring of Nearest Neighbors on Land Surface
Songhua Xing

Computer Science Department
University of Southern California

Los Angeles, CA 90089-0781

sxing@usc.edu

Cyrus Shahabi
Computer Science Department
University of Southern California

Los Angeles, CA 90089-0781

shahabi@usc.edu

Bei Pan
Computer Science Department
University of Southern California

Los Angeles, CA 90089-0781

beipan@usc.edu

ABSTRACT

As geo-realistic rendering of land surfaces is becoming

commonplace in geographical information systems (GIS), games

and online Earth visualization platforms, a new type of k Nearest

Neighbor (kNN) queries, “surface” k Nearest Neighbor (skNN)

queries, has emerged and been investigated recently, which

extends the traditional kNN queries to a constrained third

dimension (i.e., land surface). All existing techniques, however,

assume a static environment, limiting their utility in emerging

applications (e.g., Location-based Services) where objects move.

In this paper, for the first time, we propose two exact methods that

can continuously answer skNN queries in a highly dynamic

environment which allows for arbitrary movements of data

objects. The first method, inspired by the existing techniques in

monitoring kNN in road networks [7] maintains an analogous

counterpart of the Dijkstra Expansion Tree on land surface, called

Surface Expansion Tree (SE-Tree). However, we show the

concept of expansion tree for land surface does not work as SE-

tree suffers from intrinsic defects: it is fat and short, and hence

does not improve the query efficiency. Therefore, we propose a

superior approach that partitions SE-Tree into hierarchical chunks

of pre-computed surface distances, called Angular Surface Index

Tree (ASI-Tree). Unlike SE-tree, ASI-Tree is a well balanced thin

and tall tree. With ASI-Tree, we can continuously monitor skNN

queries efficiently with low CPU and I/O overheads by both

speeding up the surface shortest path computations and localizing

the searches. We experimentally verify the applicability and

evaluate the efficiency of the proposed methods with both real

world and synthetic data sets. ASI-Tree consistently and

significantly outperforms SE-Tree in all cases.

1. INTRODUCTION
With advances in remote sensing (e.g., LIDAR sensors) and

computer graphics, a realistic, accurate and detailed rendering of

Earth surfaces is becoming feasible in many applications. For

example, both Microsoft Virtual Earth™ and Google Earth™

have started the display of accurate terrain models. Computer

games, GIS systems and training simulators are other examples in

which geo-realistic rendering of surfaces is included. Since the

terrain models are no longer sparse nor based on synthetically

generated data, disk-based structures are needed to store the large

real-world datasets. Unfortunately, most data structures are

designed to expedite the rendering of this geo-realistic data rather

than its querying and access. The database community has

recently started paying attention to this important but untapped

area by studying a new type of k Nearest Neighbor (kNN) queries

on surfaces, called surface kNN (skNN) queries [2, 3, 4].

Given a query point, a conventional kNN query [14] returns the

number of k objects with the minimum distance with reference to

this query point. In the case of skNN, the distance is measured by

the surface distance. Note that this is different from 3D Euclidean

space as the 3rd dimension is constrained by the terrain model.

The skNN problem is analogues in some sense to supporting kNN

query on road networks, where the distance is the network

distance. However, the main difference is that the surface model,

represented as triangular meshes, is much larger than road

networks and even worse, the state-of-the-art algorithm to

compute the surface distance (i.e., Chen-Han algorithm [1]) is

much more complex than the Dijkstra algorithm [5] to find the

shortest network path. To illustrate, note that the digital surface is

usually represented as the Triangular Irregular Network model

(TIN), a mesh generated from the sampled ground positions with

3D coordinates known as Digital Elevation Model (DEM). If we

consider this TIN model as a graph with triangles’ sides and

vertices as edges and nodes, a reasonable size area (e.g.,

downtown Los Angeles) of 14km×10.7km using a 10m sampling

interval contains about 1,498,000 nodes [11]. However, the graph

of the road networks of the same area contains only 79,800 nodes

[20]. Besides, the Chen-Han algorithm needs O(N2) time to

compute the shortest surface path between a pair of points, where

N is the size of the surface model. In [2], it is reported that this

operation will take tens of minutes on a modern PC while it only

takes a few seconds for the Dijkstra algorithm to compute the

shortest path on a road network with the same size.

In this paper, for the first time, we study the problem of

“Continuous” Surface k Nearest Neighbor (CskNN) query, which

similar to its counterparts in Euclidean and network spaces,

monitors the moving k nearest neighbors on land surfaces. Current

skNN techniques [4] cannot support continuous queries efficiently

as the data structures are expensive to update. Meanwhile, current

continuous kNN methods on Euclidean and road networks cannot

support CskNN due to the complexities of land surfaces.

In addition to their general utility in virtual environments,

computer games, GIS and simulations, CskNN queries are

applicable to a wide range of specific real-world applications as

with CskNN the objects can arbitrarily move on land surfaces. For

Permission to copy without fee all or part of this material is granted

provided that the copies are not made or distributed for direct commercial

advantage, the VLDB copyright notice and the title of the publication and its

date appear, and notice is given that copying is by permission of the Very

Large Database Endowment. To copy otherwise, or to republish, to post on

servers or to redistribute to lists, requires a fee and/or special permissions

from the publisher, ACM.

VLDB ’09, August 24-28, 2009, Lyon, France.

Copyright 2009 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

example, in the domain of disaster response, when one of the

deadliest earthquakes hit Sichuan, a mountainous region in China,

in May 2008, the entire transportation system collapsed, limiting

movements to land surface. Under this circumstance, CskNN

queries become extraordinarily important to save lives as they can

monitor and coordinate among the moving objects (e.g., rescue

teams) as well as provide exact shortest surface paths for

evacuation purposes. In scientific research and environment

protection domains, CskNN can be used to monitor the

movements of animals to understand their habitats and the

relationship between species. Finally, with recent advances in

robotics, autonomy and ubiquitous sensors, new generation of

terrain rovers are capable to perform difficult tasks in rough

terrains for research in natural science and resource (e.g., coal, oil

and mine) and space exploration. Therefore, it is essential to

monitor these robots in order to maximize their effectiveness.

To tackle the CskNN queries, we start by studying the

applicability of one of the most successful CkNN approaches in

road networks to our problem. In particular, we introduce a

counterpart of Dijkstra Expansion Tree [7] for surface, called

Surface Expansion Tree or SE-Tree for short. For a static query

point (or site), an SE-Tree computes the shortest surface path

from the site to all the vertices of TIN. We show that unlike its

counterpart, due to the special characteristics of land surfaces, SE-

Tree is usually fat and short (e.g., for SE-Tree of a sample area

with 11,406 vertices, the fan-out of the root node is 6,038) while

the average fan-out of a node in Dijkstra Expansion Tree is

usually small as a typical intersection (vertex) in a road network is

a junction of two crossing roads. Nevertheless, studying SE-Tree

and its features helped us to devise a more effective spatial index

structure called Angular Surface Index Tree (ASI-Tree).

We build one ASI-Tree for each static query point (or site) as

follows. First, centered at the query point, we partition the surface

horizontally and vertically into several chunks. Each vertical

partition, called Surface Shortest Path Container, includes vertical

cuts on overlays of SE-tree. This is feasible due to the observation

from the SE-tree structure that the shortest paths do not cross each

other. The horizontal partitions are created by several contours

centered at the query point, each of which with equal surface

distance to the query point, called Surface Equidistance Lines.

The intersection of these two partitions is called a surface chunk.

Each surface chunk also stores some pre-computed information

that can be used to expedite the exact shortest surface path

computation. Next, an ASI-tree is built by hierarchically indexing

these chunks rather than all the vertices in the triangular mesh.

ASI-Tree has several useful features. First, ASI-Tree is much

smaller than SE-Tree (e.g., in the area of downtown Los Angeles,

ASI-Tree only contains about 45,000 nodes). Second, since each

container (a vertical partition) includes some pre-computed

intermediate results (image sources), the time complexity of

surface shortest path computation between the site and a moving

object is reduced to O(Nlog(M)/M) where N is the size of the

surface model and M is the total number of containers. This time

complexity is even less than the Dijkstra algorithm (O(Nlog(N)))

if we consider the mesh as a network. Third, ASI-Tree is a well

balanced thin and tall tree. The fan-out of the root is usually less

than 8 (number of opposite edges of the query point) and the fan-

out of the intermediate nodes is fixed (e.g., 2). Finally, ASI-Tree

shrinks the search area within the small chunks containing the

target moving objects. Our extensive experimental evaluation

shows that ASI-Tree always outperforms SE-Tree in both I/O and

CPU time by large margins.

The remainder of the paper is organized as follows. Section 2

briefly discusses some related research. In Section 3, we define

the problem and provide some preliminaries. Section 4 describes a

naïve CskNN algorithm based on the utilization of SE-Tree.

Section 5 describes the details of our surface index (ASI) and its

corresponding CskNN algorithm. In Section 6, we report the

results of our experiments. Finally, in Section 7, we summarize

the paper and discuss our future work.

2. RELATED WORK
In this section, we briefly survey the related work in the areas of

kNN query processing, which can be classified into two categories

of static and dynamic.

The first category is called static (or snapshot) queries. With this

category, the query points, data objects and the underlying

constrained environment (e.g., road networks, surfaces) are

assumed as static during the query time. In the Euclidean space,

Roussopoulos et al. [14] propose an R-tree based branch-and-

bound kNN algorithm; Korn et al. [15] and Tao et al. [16] study

the reverse nearest neighbor (RNN) problem, which finds the

objects that take the query point as one of their nearest neighbors.

Similar studies have been conducted in the constrained space

(e.g., road networks, land surfaces). Papadias et al. [10] employ

the Incremental Network Expansion (INE) algorithm to answer

kNN queries in road networks. This algorithm performs a Dijkstra

style expansion from the query point and examines objects in the

order they are encountered. Kolahdouzan et al. [20] propose a

Voronoi-based algorithm, VN3, for spatial network databases.

Samet et al. [9] present an algorithm which takes advantages of

pre-computed shortest paths on the graph of the road networks.

Recently, static kNN queries on land surface have been

investigated as well. In [2, 3], Deng et al. propose a distance

ranking method for the skNN query on the multi-resolution terrain

model. However, since the exact shortest surface path is neither

computed nor stored, continuous queries can only be answered as

independent snapshot queries from scratch. Shahabi et al. [4]

propose a surface R-Tree (SIR-Tree) based method which utilizes

two surface indices (TSI and LSI) to process skNN queries

efficiently and accurately. Unfortunately, neither TSI nor LSI can

be applied to the scenario where objects are moving because TSI

and LSI are built on static objects and online updating is costly.

With the second category, during the life of the query, the query

points or objects or both are dynamic. In Euclidean space, Tao et

al. [17] discuss time-parameterized queries, assuming linear

trajectories for both the query point and objects. Tao et al. [18]

also study the continuous NN (CNN) query which allows for

arbitrary query movements while the objects are static, hence the

input is a polyline which represents the query trajectory rather

than a single query point. Yu et al. [21] propose two grid based

algorithms to monitor nearest moving objects. Meanwhile, in road

networks, Shahabi et al. [19] propose an embedding technique to

transfer the road network to a constraint-free high dimensional

space to fast but approximately retrieve nearest moving objects.

Mouratidis et al. [7] propose an exact monitoring method for

moving objects. In this method, a Dijkstra expansion tree is

generated on the graph of the road network to keep track of the

shortest paths to all the nearest objects. This expansion tree grows

or shrinks as the objects move away from or towards the query

point. This paper considers three types of updates: object

movements, query movements and fluctuations of edge weights.

However, this method is more efficient to deal with object

movements than the latter two, since both query movements and

edge updates require online modifications or even the

reconstruction of the entire expansion tree, which is usually

expensive. To the best of our knowledge, there is no existing

technique for any type of dynamic kNN queries on surface.

3. PRELIMINARIES
Before we explain the approaches for continuous monitoring

algorithms, we would like to first state the underlying assumptions

and formally define the problem. Next we explain a technique to

compute the shortest path on surface and subsequently introduce

the concept of Surface Expansion Tree.

3.1 Assumptions and Problem Definition
We assume a land surface is represented by the Triangular

Irregular Network (TIN) model. A land surface also contains a set

of moving objects and fixed position CskNN queries. A moving

object is also called a point of interest. A CskNN query represents

a request from a user at a fixed position to monitor its k closest

objects. The query point is regarded as static during the query

time, which could be a field observation station or a watch tower

in real applications, while the objects move arbitrarily on the

surface, which could be GPS attached vehicles or animals in real

applications. Whenever the moving objects change locations, they

send update requests to a centralized server to notify their new

locations. Note that the objects or the query points are not

necessarily located on the vertices of the TIN model.

Three distance metrics are typically considered on land surface:

Euclidean Distance DE, Network Distance DN and Surface

Distance DS. The surface distance between two points on a terrain

T is defined as the length of the shortest path connecting these two

points on T while the network distance is defined as the length of

the shortest path between two points on the graph G of T. In [4],

the formal definitions of these three distance metrics and their

relationships are provided. In sum, the Euclidean distance is

always the lower bound of the surface distance while the network

distance is always the upper bound of the surface distance.

Now we are ready to formally define the CskNN problem:

Problem Definition: Let T be the surface model and P be a set of

moving data objects, given a query point q and a time interval τ, a

CskNN query continuously identifies the k nearest objects in P to

q based on the surface distance on T during τ.

Evaluating a CskNN query consists of two steps: 1) initial result

computation as a snapshot skNN query which has been studied in

[2, 3, 4]; and 2) continuously monitoring and updating the result

sets as the objects move. The focus of this paper is on the latter.

3.2 Shortest Surface Path Computation
Chen-Han algorithm [1] is the state-of-the-art algorithm and has

been widely used to compute the shortest path on a polyhedron

surface. The basic idea of this algorithm is to first unfold all the

faces of the polyhedron to one plane and then the straight lines on

this plane that connect the source point to each vertex are the

shortest surface paths from the source to these vertices. This

algorithm costs O(N2) time and Θ(N) space, where N is the

number of polyhedron faces. Chen-Han algorithm is practically

expensive because there are many possible unfolding alternatives

at each step of the algorithm. During the unfolding process, an

unfolding sequence tree is kept in memory to traverse all the

unfolding possibilities. This algorithm terminates when all the

faces on the polyhedron surface have been processed (unfolded).

We explain this algorithm using the following example [4].

Example 1: Figure 1 shows the process of computing the surface

path between A and B on a tetrahedron. The triangular face 1, 2, 3

and 4 are unfolded to a plane with different unfolding alternatives

(Case 1--3). The surface distance is the length of the shortest

straight lines connecting A and B across all possible cases. The

algorithm will compare the unfolding results and output Case 2 as

the shortest surface path.

Figure 1. The unfolding process of Chen-Han Algorithm [4]

3.3 Surface Expansion Tree
With road networks, the Dijkstra Expansion tree is used to

process kNN queries [7, 10]. This tree is generated by running

Dijkstra Algorithm on the graph of a road network. The advantage

of this tree is that it is embedded with the spatial proximity

information of the underlying environment and is independent

from the distribution of the data objects. Analogous to the

Dijkstra Expansion tree, based on the Chen-Han algorithm, we

define surface expansion tree as follows:

Definition 1 (Surface Expansion Tree): Let T be a surface model

with the vertex set V and a source point s, the Surface Expansion

Tree (SE-Tree) of T rooted at s is defined as the layout of Chen-

Han algorithm, whose nodes are V and edges represent the

shortest surface paths from s to these nodes.

Figure 2. The SE-Tree and its overlay on surface

Figure 2 depicts the appearance of a Surface Expansion Tree. It is

important to note the Surface Expansion Tree is different from the

unfolding sequence tree since the Surface Expansion Tree is the

final result of Chen-Han algorithm and there is only one path from

the source to one vertex while the unfolding sequence tree is an

intermediate result and all alternative paths are preserved.

From Figure 2, we have the following observations:

Observation 1: On a surface T with a source point s, any two

shortest path sv1, sv2 from s to two different vertices v1, v2 do not

cross each other.

 Proof (by contradiction): Suppose sv1, sv2 cross at point p; thus

sp1 and sp2 become two different paths from s to p as depicted in

Figure 3(a). Without loss of generality, assume the length of sp1 is

equal or smaller than the length of sp2, then the sum of the lengths

of the paths sp1 and pv2 is equal or smaller than the length of sv2,

therefore the shortest path from s to v2 is not sv2, which

contradicts our assumption. □

Figure 3. Observation 1

However, it is possible but infrequent for different shortest paths

to share common segments from the source point as Figure 3(b)

depicts. If the split point p happens to be a vertex on the surface,

then v1, v2 are p’s descendants in the SE-Tree. Observation 1 is

very important. It makes partitioning these surface shortest paths

of an SE-Tree possible. Since these paths share a common source

and do not cross each other, it is possible to partition the entire

surface into several sector-shaped sub areas without cutting

through any path. In Section 5, we will show how to utilize this

observation to prune the search space.

Observation 2: Given a surface T and a source point s, the

surface expansion tree of s has a very large fan-out at the root and

a very low depth (i.e., a short and fat tree).

As depicted in Figure 2, unlike Dijkstra Expansion Tree on the

road network, SE-Tree in general is fat and short because two

paths rarely share any common segment. This observation points

out the major drawback of SE-Tree: its extremely large size which

is quadratic to the terrain size with an almost linear search time

due to the tree being short and fat. Therefore, in Section 4, we

only keep a very small fraction of the tree in memory at the just

enough level to monitor the nearby data objects.

4. A NAIVE APPROACH
In this section, we describe a naïve approach which is a variation

of techniques proposed in [7, 10] on road networks to surface by

exploiting the counterpart of Dijkstra Expansion Tree of road

networks, which is Surface Expansion Tree. We first present the

algorithm and then analyze its drawbacks and deficiencies.

4.1 Initial Query Processing
We use the techniques based on MR3 framework [2] for initial

query processing. We first describe the algorithm and then define

the concepts of two areas used in this algorithm.

First of all, a 2D kNN Query is issued using Euclidean distance

and k objects are acquired. Next, in the filter step, among these k

objects, we select the one with the largest network distance and

use this distance denoted as DL to bound the search area as a

range query in Euclidean Space. Finally, in the refinement step,

we calculate the surface distances of all objects within this area

and rank them to find the k nearest neighbors. In the result set, we

denote the surface distance of the kth nearest neighbor as DR.

Now we formally define Expansion Area and Result Area:

Definition 2 (Expansion Area): Let T be a surface model with a

source point s, expansion area EA(s) is a polygonal area around s,

defined by EA(s) = {p: p ∈ T and DE (p, s) ≤ DL}. The boundary of

EA(s) is called the expansion boundary and denoted as EB(s).

Definition 3 (Result Area): Let T be a surface model with a

source point s, result area RA(s) is a polygonal area around s,

defined by RA(s) = {p: p ∈ T and DS (p , s) ≤ DR }. The boundary

of RA(s) is called the result boundary and denoted as RB(s).

The expansion boundary bounds the area that needs unfolding by

Chen-Han algorithm while the result boundary keeps track of the

current result.

4.2 Object Movements
The data objects update their locations as they move. In this

section, without loss of generality and to simplify discussion, we

assume that there is only one query q in the system. Similar to [7],

we classify the object movements into three categories: the

movement within the result boundary, the incoming movement

and the outgoing movement. We ignore those object movements

that are outside the result boundary because they have no impact

on the result set at all. Although movements within the result

boundary may alter the ordering among k objects, the result set

remains the same and we can ignore this case as well except the

movement of the kth object where the result boundary itself needs

updating. With respect to the number of objects passing through

the result boundary, the maintenance of the result set can be

divided into two scenarios depending on whether there are more

outgoing objects or more incoming objects.

Figure 4. Objects updates for 3-NN monitoring

If there are more outgoing objects than the incoming ones, the

number of objects inside the original result boundary will be less

than k and SE-Tree needs growing. As the example depicted in

Figure 4(a) shows, both p2’ and p3’ become the candidates for kth

NN since they are now in the area between the original result

boundary and the new expansion boundary. On the other hand, if

the outgoing objects are no more than the incoming ones, there

are at least k objects located in the original result boundary and

the result boundary probably shrinks. As the example depicted in

Figure 4(b) shows, p6 no longer belongs to the result set as it is

outside of the new result boundary. Figure 5 depicts the algorithm

to process a CskNN query.

Figure 5. The naïve algorithm for CskNN

Proposition 1: Let N be the size of the surface model T in number

of vertices and m be the total number of objects, Algorithm 1’s

time complexity is O(N2 + mlog(m)).

Proof: The major time consuming step is the expansion step (Line

12-13) where the surface distances are computed. The algorithm

needs O(Nlog(N)) time to calculate the expansion boundary and

O(N2) time to compute the surface distance by using Chen-Han

algorithm. Besides, it takes mlog(m) to update results (Line 7, 14-

19). Thus the total time complexity is O(N2 + mlog(m)). □

Since O(N2) is usually at several orders of magnitude larger than

mlog(m), the overall time complexity of Algorithm 1 is O(N2).

However, in the shrinking phase, there is no surface distance

computation; hence the overall complexity is reduced to mlog(m).

Therefore, in our implementation, we cache the result of surface

distance computation during the growing phase to avoid

redundant computation for future object movements.

4.3 Analysis
Compared with techniques for kNN on road networks, this naïve

approach shares some fundamental similarities. First, all these

methods built an expansion tree rooted at the query point. Second,

during the continuous monitoring phase, whether to update the

result is determined by the result boundary (termed Influencing

Interval in [7]). However, unlike Dijkstra algorithm, Chen-Han

algorithm is suboptimal, that is, it is possible for SE-Tree to reach

a vertex that has larger surface distance earlier than another vertex

with smaller surface distance. Consequently, we need both the

result boundary (to keep track of results) and expansion boundary

(to bound the search) while these two boundary are the same on

road networks.

This naïve approach could be fast during the phase when the SE-

Tree shrinks. On the other hand, if there are more outgoing

objects, the expansion tree has to grow to include k desired

objects. In the case where there are many more outgoing objects

or the kth nearest neighbor is far away, this algorithm may take

tremendous CPU time for expansion processing. There are two

reasons for this: 1) the overhead of online surface path

computation is extremely high as shown in Proposition 1; and 2)

the expansion area of SE-tree could be large. As shown in Figure

4(a), the expansion area from the old result boundary to the new

expansion boundary is a ring-shaped area. To overcome these two

problems, in Section 5, we create a data structure called Surface

Shortest Path Container to store partial results of pre-computation

and build a novel index schema called Angular Surface Index

(ASI) which overlays the fat and short SE-Tree with another thin

and tall tree in order to enhance the query efficiency.

5. SURFACE INDEX BASED ALGORITHM
In this section, we introduce a novel spatial index structure called

Angular Surface Index (ASI) and its corresponding ASI-Tree

which is a thin and tall tree structure to replace the fat and short

surface expansion tree. Please note, the thin and tall tree here

refers to a well balanced tree with a small branching factor (e.g.,

kd-Tree, Quad Tree). Towards this end, in Sections 5.1 and 5.2,

we first introduce the concepts of two data structures: Surface

Shortest Path Container and Surface Equidistant Line

respectively, and then in Section 5.3 we present ASI and ASI-Tree

which are built on top of these two data structures. In Section 5.4,

we explain how this index structure can both localize the search

and speed up the shortest surface path computation.

5.1 Surface Shortest Path Container
The simplest way to address the first drawback of the naïve

approach is to pre-compute a complete SE-Tree offline and to

store its corresponding shortest paths from the source. This

approach could greatly speed up the online query. The shortest

path computation could be divided into the following two steps: 1)

locate the data object using a spatial index and 2) retrieve the

shortest path directly from disk. However, this approach suffers

from the following drawbacks: 1) in the case where a data object

lays on the face rather than a vertex, this approach cannot find the

exact shortest path and the accurate distance; 2) given a surface

with N vertices, the space complexity of storing all these shortest

paths is O(N2) per site, which is prohibitive especially since N

could be in the order of millions and 3) the search time is almost

linear. Therefore, in order to obtain precise results for arbitrary

object movements and reduce both the space complexity and

search time, we instead store geometric objects called containers.

The goal of using containers is to take advantage of partial results

based on geometric property to speed up the online process.

Algorithm 1: CskNN I (surface T, query q, int k)
1. initialize min-heap H, stack result;
2. initialize SE-Tree t rooted at q;
3. result �Initial Processing (T, q, k); // Section 4.1
4. calculate RB(q);
5. if there is an update with RB(q), let the number of

outgoing object points as m and the number of incoming
object points as n;

6. if m ≤ n
7. update result;
8. shrink t and update RB(q);
9. else
10. clear H and result;
11. add the object points inside RB(q) to H
12. calculate EB(q);
13. expand t within EB(q);
14. for each object point p between RB(q) and EB(q)
15. retrieve the surface distance Ds(p, q);
16. add p to H;
17. while(result.size < k)
18. p’ �deheap H;
19. add p’ to result;
20. update RB(q);
21. keep monitoring until termination condition

5.1.1 Definition and Properties
For road networks, the shortest path container is defined in [8]:

Let G = (V, E), w: E→R be a weighted graph, a set of nodes C ⊆

V is called a container. A container C of an edge (u, v) is called

consistent, if for all shortest paths from u to t that start with the

edge (u, v), the target t is in C.

The advantage of using the shortest path container is to minimize

the search area of Dijkstra algorithm. Similarly, if we can group

the shortest paths on surface based on where they start from, we

can prune the search space dramatically and speed up the query

process. However, this classification technique on road networks

cannot directly apply to surface because these surface shortest

paths hardly share common segments and most containers would

end up with only one vertex, which reflects the characteristic of

SE-Tree: short and fat. Consequently, we propose a new concept

of Cover Set and redefine the concept of Shortest Path Container

for surface, and then discuss their spatial properties.

Definition 4 (Cover Set of an edge): Let T be a surface model

with the vertex set V and a source point s. We call a set of vertices

CS ⊆ V on T a cover set of an edge e if CS consists of all and

only the target vertices whose shortest paths from s intersect with

e. We denote this cover set as CS(e).

Figure 6. Cover Set and Container

The cover set of an edge defines a subset of vertices that can be

reached by the shortest paths passing though that edge. To

illustrate, we can use different colors to represent different cover

sets of the edges opposite to the source point (Figure 6(b)). All the

vertices of one cover set share the same color. Subsequently, the

entire surface is divided into several disjoint regions. Figure 6(a)

depicts this coloring. It is not surprising to find out that the

vertices with the same color are close to each other. The following

property determines its geometric boundary.

Property 1: Given the cover set CS(e) of an edge e on a terrain T

with a source point s, there must exist a geometric boundary b that

encloses all and only the vertices of CS(e) and their shortest paths.

The proof of Property 1 is straightforward and we omit the details

here due to the space limit. Intuitively, as the shortest paths do not

cross each other according to Observation 1, we can always find a

polyline sp from the source s to a point p on the margin of T,

which is immediately left to the leftmost shortest path to CS(e)

and do not cross any shortest paths, hence sp constitutes the left

part of the boundary b. Similarly, the right part of the boundary b,

sq also exists and the polyline on the margin between p and q, (p,

q) constitutes the end boundary part. In some rare cases where

none of the shortest paths to CS(e) reaches the margin of T, we

can choose p and q as the same point on the margin of T and the

end boundary polyline (p, q) converges into one single point.

As a result of Property 1, for each cover set, a contour outline can

be drawn as its geometric boundary. Now we give the formal

definition of a container.

Definition 5 (Container of an edge): Let T be a surface model

with the vertex set V and a source point s. A container of an edge

e is defined as C = (CS, B), where CS denotes the cover set of e

and B is the geometric boundary of CS that satisfies Property 1.

We denote this container as C(e).

Figure 6(b) depicts a container C(e) and all its shortest paths.

Compared with the concept of container defined for road

networks, the surface shortest path container is more rigorous

since it does not include the vertices or paths of other containers.

For each container, its boundary consists of: the left boundary line,

the right boundary line and the end boundary line (which only

exists if the left and right boundary lines do not converge). We

will see how to draw this boundary in Section 5.1.2. Based on the

boundaries, we can define the following relationships.

Definition 6 (Intersection): Let C1 and C2 denote two containers

on a terrain T, C1 intersect C2 when their boundaries intersect.

Definition 7 (Contain): Let C1 and C2 denote two containers on a

terrain T, C1 contains C2 when all the vertices of the cover set of

C2 are also in the cover set of C1.

Definition 8 (Adjacency): Let C1 and C2 denote two containers

on a terrain T, C1 and C2 are adjacent when they share a common

boundary line.

Definition 8 is a little bit ambiguous since the boundary of a

container is not unique because any curve separating two cover

sets without crossing any shortest path can be viewed as a

boundary line. Therefore, it is possible for two containers to be in

fact adjacent without sharing any boundary line. However, we

consider any two boundary lines as one as long as there is no

vertex between these two.

Property 2: Let C1(e1) and C2(e2) denote two containers on a

terrain T with a source point s, where neither C1 contains C2 nor

C2 contains C1. C1 and C2 do not intersect if and only if e1 and e2

do not have any common shortest path from source s.

Proof: (by contradiction) Assume that C1 and C2 have no

intersection, and e1 and e2 share one shortest path sp from the

source s. Thus, sp’s target point p must be included in both C1 and

C2 according to the definition of container. In this case, since

neither C1 contains C2 nor C2 contains C1, then C1 and C2 must

intersect, which contradicts the assumption. □

Property 3: Let C1(e1) and C2(e2) denote two containers on a

terrain T, C1 contains C2 if and only if all the shortest path from

source s passing through e2 also pass through e1.

Property 4: Let C1(e1) and C2(e2) denote two containers on a

terrain T, C1 and C2 are adjacent if and only if e1 and e2 are

connected by a common vertex v and do not have any common

shortest path from source s except through v.

(Proofs of Property 3 and 4 are similar to Proof of Property 2 and

are hence omitted.)

Next, we define the container for a group of adjacent edges.

Definition 9 (Container of several adjacent edges): Let C1,

C2, …, Cn denote n containers on a terrain T for n adjacent edges

e1, e2, …, en. The container of these edges is defined as C = (CS,

B) where CS is the union of all cover sets of C1, C2, …, Cn, and B

is the geometric boundary of CS that satisfies Property 1. We

denote this container as C(e1,e2, …, en).

In fact, the left and right boundary lines of C(e1, e2 …en) can be

drawn by tracing the outermost boundary lines of the two side

containers and its end boundary line is the union of the end

boundary lines of all the participating containers. In addition, the

three operations (Intersection, Contain and Adjacency) for this

type of container can be defined exactly the same as in Definitions

6, 7, 8 and Properties 2, 3 and 4 still hold. Similarly, the container

of any arbitrary polyline on surface can be defined the same as

Definitions 5 and 9 and all the above properties hold.

5.1.2 Creating Surface Shortest Path Container
In this section, we propose an algorithm to create a surface

shortest path container.

Figure 7. To trace left boundary line of a container

Figure 8. The algorithm to trace the left boundary line

First of all, we sort shortest paths counter-clockwise where the

target vertex of each path inherits the same sequence number as its

shortest path. Figure 8 depicts the algorithm to trace the left

boundary line of a container. Initially, the left boundary line is the

container’s leftmost shortest path sp1 (assuming the source point s

is on the right) as depicted in Figure 7. Once this path reaches its

target vertex vt and ends, this algorithm takes another shortest

path sp2 that intersects one of vt’s edges e and has the smallest

(leftmost) sequence number after sp1. We denote p as the

intersection point of e and sp2. In some very rare case, when none

of vt’s edges intersects any other shortest path of this container,

we expand edges from vt in a Dijkstra style until the intersection

point p is found. After adding edge (vt, p), the left boundary line

continues tracing sp2. This process continues until the boundary

line finally reaches a vertex on the margin of the surface or all the

paths has been traversed. Figure 9 provides the complete

algorithm to create a shortest path container. Please note, in Line

6, the end boundary can be NULL if left and right boundaries do

not intersect the margin. The time complexity of Algorithm 3 is

O(NlogN) due to the sort operation in Line 3. However, since the

pre-computation of shortest paths takes O(N2), the overall time

complexity is O(N2).

 Figure 9. The algorithm to create a container

5.2 Surface Equidistant Line
As shortest path containers partition a surface towards the vertical

(longitude) direction, Surface Equidistant Lines are designed to

partition along the horizontal (latitude) direction.

In cartography, a contour line which consists of points of equal

elevation could be used to group the elevation information on a

terrain. With the similar purpose, we can draw lines with equal

surface distance to a fixed point.

Definition 10 (Surface Equidistant Line): Let T be a surface

model with a source s. Given a distance value d, a surface

equidistant line is defined as l(s, d) = {p: p ∈ T and DS (s, p) = d}.

For a given source point, several surface equidistant lines with

different distance values divide the surface into disjoint rings.

These lines are sorted by their increasing distance value to the

source point and this order is termed as levels (e.g., the one with

smallest distance is call 1st level surface equidistant line). These

surface equidistant lines are represented as polylines on a surface

model (see Figure 10(a)).

Property 5: Let l1 and l2 denote two adjacent polylines of a single

equidistant line on a terrain T, there does not exist any shortest

path from the source s that intersects both l1 and l2 unless at their

common vertex v.

Proof: (by contradiction) Assume there is a shortest path sp,

which intersects both l1 and l2 at p1 and p2, respectively. Without

loss of generality, we assume that sp intersects l1 first, so the

length of the shortest path to p2, is |(s, p2)| = |(s, p1)| + |(p1, p2)|.

Since |(p1, p2)| > 0, it contradicts the definition of surface

equidistant line that |(s, p2)| = |(s, p1)|. □

Combined with Property 4, we have the following corollary.

Corollary 1: Let l1, l2 denote two adjacent polylines of a surface

equidistant line on a terrain T, then the two containers C1 (l1), C2

(l2) are adjacent.

5.3 Angular Surface Index
Based on surface shortest path containers and surface equidistant

lines, a terrain surface can be divided into the following regions:

Algorithm 3: Create A Container (polyline l)
1. initialize a container C;
2. C.cover set � all the destination vertices of the shortest

path intersecting l;
3. sort the shortest paths intersecting l counter-clockwise, let

sp be the leftmost path and sq be the rightmost path;
4. C.lBoundary �Trace Left Boundary(sp);
5. C.rBoundary � Trace Right Boundary(sq);
6. C.eBoundary � part of the margin of the surface that

intersects its C.lBoundary and C.rBoundary;
7. return C;

Algorithm 2: Trace Left Boundary (path sp)
1. initialize a stack B;
2. add sp to B;
3. let v be the destination vertex of sp;
4. while v is not on the margin of the surface
5. find the leftmost shortest path sp2 (but right to sp) that

intersects v’s edges with an intersection p;
6. if (sp2 is NULL) break;
7. add edge (v, p) to B;
8. add the path of sp2 starting from p to B;
9. v � destination vertex of sp2;
10. sp � sp2;
11. return B;

First, the surface is partitioned into m containers according to the

m opposite edges of the source point. The opposite edges of a

point p are all the edges of the triangles that have p as a vertex,

but these edges do not share a vertex at p (see Figure 6(b)). For

real world terrain models, m is usually smaller than 8. We call

these containers Primary Containers or 1st Level Containers.

Second, inside each primary container, the region is partitioned by

different surface equidistant lines. Next, in order to make

partitions of equal size, we further continue partitioning according

to each partition’s proximity to the source point: each partition at

level n will result in the number of bf partitions at level n+1.To

simplify our implementation, we fixed the branching factor bf at 2

as depicted in Figure 10(a). We will further study the impact of bf

in our future work. For illustration purpose, a planar abstraction

of ASI is depicted in Figure 10(b). Since each partition has an

angular shape, this index structure is called Angular Surface

Index (ASI) and each partition is called a surface chunk.

From the perspective of containers, ASI can also be viewed as a

hierarchy of containers based on the “containing” relationship.

Every surface equidistant polyline of each surface chunk is used

to create a container. Inside one container, because the shortest

paths that pass through one equidistant polyline l1 at level n+1

must pass through another equidistant polyline l2 at level n, as a

result of Property 3, the container of l1, C1(l1) must be contained

by the container of l2, C2(l2) and we say C1 is a child of C2. With

ASI, each container has two children. According to Corollary 1,

these two children are adjacent. Therefore, a tree is built for ASI

construction, called Angular Surface Index Tree (ASI-Tree).

Figure 10(c) depicts an ASI-Tree. With this ASI-Tree, each node

represents a container. The root node is the source point which

could be viewed as a super container that contains the entire

surface. Except for the root node, all intermediate nodes have a

fan-out of two. Besides pointers to its children, each intermediate

node also stores pointers to two polylines: one polyline that

separates its own chunk from its children, termed chunk separator

and another polyline that separates its two children, termed child

separator. The root usually has more than one child separators.

To facilitate shortest path computation, each node also stores the

image sources (defined in [1]) for the vertices in the chunk. An

image source for a point p is the image of the source that is

coplanar with the face containing p for a given unfolding and is an

intermediate result while running Chen-Han algorithm. However,

since many faces can be reached by one unfolding, the total

number of image sources are much less than the number of faces

(or vertices) inside this chunk. We refer readers to [1] for details.

Unlike R-Tree [12] whose node size can be chosen to be equal to

(or a multiple of) disk page size, ASI-Tree has a fixed node size,

thus is stored on disk the same way as other external data

structures with fixed node size such as Quadtree or K-D tree [13].

Compared with SE-Tree, ASI-Tree has the following advantages:

1. Storage: ASI-Tree has M nodes while SE-Tree has N nodes.

(N is the terrain size while M is the total number of chunks).

2. Regularity: ASI-Tree is almost balanced while SE-Tree is

very irregular and surface dependent.

3. Efficiency: ASI-Tree has a small fan-out for each node and

the search time is logarithmic while SE-Tree is usually fat

and short and the search time is almost linear.

Figure 10. ASI and ASI-Tree

Please note, the ASI-tree for the entire terrain is usually not fully

balanced as the query point is not always at the center of the

terrain or in the special case where the query point is placed near a

steep terrain surface, causing some containers not covering any

vertex on the margin. Fortunately, this "unbalance" has little

impact on our problem. This is because, kNN queries typically

concern about the nearby objects and usually can be answered

before reaching the leaf nodes of the ASI tree (the margin of the

surface). Hence, for the majority of cases, the part of the ASI tree

that will be visited is balanced and the search time is logarithmic.

Figure 11. The algorithm to create all containers

Figure 12. The algorithm for ASI construction

Algorithm 5: ASI Construction (surface T, source s, int n)
1. initialize an ASI-Tree root at s;
2. for each edge ei opposite to s
3. primary container PC(ei) � Create A Container(ei);
4. root.child[i] � PC(ei)
5. create n equidistant lines, next, sort them by levels;
6. for each PC(ei)
7. polyline l � first equidistant polyline inside PC(ei);
8. divide l into two equal length polylines l1 and l2;
9. PC(ei)’s left child � Create All Containers(l1);
10. PC(ei)’s right child � Create All Containers(l2);
11. return root;

Algorithm 4: Create All Containers (polyline l)
1. container C � Create A Container(l); // Algorithm 3
2. if C does not contain any equidistant line // a leaf node
3. return C;
4. else
5. polyline l’ � the lowest level equidistant polyline in C;
6. divide l’ into two equal length polylines l1 and l2;
7. C’s left child � Create All Containers(l1);
8. C’s right child � Create All Containers(l2);
9. return C;

Figure 12 provides a recursive algorithm to construct an ASI-Tree.

In Algorithm 5, n indicates the total number of equidistant lines.

If the equidistant lines are selected at the constant distance

interval, the total number of chunks will be exponential with the

terrain size, which is prohibitive. Therefore, the equidistant lines

should be selected at the distance multiplied by 2n/2, making the

number of chunks linear with the terrain size. In experiments, n is

selected automatically by a parameter called Container Density DC

that n = log (NDC) where N is the terrain size.

Figure 13. The algorithm for shortest path computation

Figure 13 sketches an algorithm to use the ASI-Tree to locate

which chunk a data object falls in and compute its surface

distance. In Line 4, upon identifying which chunk the object p

falls in, its surface shortest distance is then computed based on the

image sources stored for this chunk. According to the definition,

the image source s’ is coplanar with the face p locates, its surface

distance can be computed immediately as the Euclidean distance

between s’ and p. In order to address kNN only, this process is

enough. For cases where we also need the actual path, we need to

unfold this chunk and all its ancestors. We apply a variation of

Chen-Han algorithm where the image source is known in advance:

first, connect the image source s’ and p to form a straight line s’p,

then start unfolding from p and always choose the face that

overlaps with the line s’p. Apparently, this variation runs linearly

with the number of vertices in the unfolding area.

The time complexity of Algorithm 6 is O(Nlog(M)/M) because the

algorithm needs O(Nlog(M)/M) time to locate p and O((N/M))

time to find the image source and compute its surface distance. If

an exact surface path is desired, the unfolding process costs

O(Nlog(M)/M) but the overall complexity remains the same.

ASI can also be indexed by SIR-Tree proposed in [4]. For each

surface chunk, a representative point can be selected for the R tree

index. Correspondingly, each leaf node records a pointer to the

vertex list of each chunk. However, this R-tree based approach

does not take advantage of the hierarchical spatial containing

relationship of containers and results in a larger search area.

5.4 CskNN Query Processing
In this section, we present our algorithm to process CskNN

queries using ASI-Tree and explain why this algorithm will

reduce the search area compared with the naïve approach. The

core of our CskNN query processing is the same as discussed for

the naïve approach in Section 4.1 and 4.2. The main difference is

that we utilize ASI-Tree to localize the search area for candidates

and reduce the complexity of surface shortest path computation.

Figure 14. the algorithm for initial query processing

Figure 14 depicts the initial result computation phase. Similar to

the naïve approach, Algorithm 7 shares the same filter and

refinement framework as in Section 4.1. However, it has the

following differences. First, in Line 4, during the first filtering

step, the actual surface distances to candidates are computed using

ASI-Tree rather than the network distances. This not only results

in a smaller search area, but more importantly, makes the

complexity of this process (O(Nlog(M)/M)) even less than that of

the Dijkstra algorithm (O((Nlog(N))) if we consider the mesh as a

network. Second, in Line 8, a second filtering step is employed

which takes advantage of the property of surface equidistance

lines, thus the size of the candidate set is reduced even further.

Figure 15. The surface index based algorithm for CskNN

Algorithm 6: Compute DS (surface T, ASI-tree r, point p)
1. container node � r;
2. while (node != NULL)
3. if p is on the upper region of node.chunk separator

 // this chunk contains point p
4. search the image source s’ for p and compute

DE(s’, p);
5. return DE(s’, p);
6. else
7. find number m that p is between node’s mth child

separator and node’s m+1th child separator
8. node � node’s mth child;

Algorithm 8: CskNN II (surface T, ASI-tree r, query q, int k)
1. initialize min-heap H, stack result, candidate set Q, Q2
2. result �Initial Processing (T, r, q, k) and calculate

RB(q); // Algorithm 7
3. if there is an update with RB(q), let the number of

outgoing object points as m and the number of incoming
object points as n;

4. if m ≤ n
5. update result;
6. update RB(q);
7. else
8. clear H and result;
9. Q �apply filter1 (T, r, q, k);
10. Q2 �apply filter2 (T, r, q, k);
11. add the object points inside Q2 to H
12. Q � Q – Q2;
13. for each object point p in Q
14. compute DS (T, r, p) ; // Algorithm 6
15. add p to H;
16. while(result.size < k)
17. p’ �deheap H;
18. add p’to result;
19. update RB(q);
20. keep monitoring until termination condition;

Algorithm 7: Initial Processing (surface T, ASI-Tree r, query
q, int k)
1. initialize min-heap H, stack result, candidate set Q, Q2
2. Q � kNN(q); // 2D k-NN query in Euclidean Space
3. for each object point p in Q
4. Compute DS (T, r, p) ; // Algorithm 6
5. add p to H;
6. Dmax � maximum surface distance of objects in Q;
7. Q � Range(q, Dmax); // range query in Euclidean space
8. find number m that there are k1 (≤ k)objects inside the mth

surface equidistance line and k2 (> k) objects within the
(m+1)th surface equidistance line; then insert the objects
within the (m+1)th surface equidistance line into Q2

9. Q � Q ∩ Q2
10. for each point object p in Q but not in H
11. Compute DS (T, r, p) ; // Algorithm 6
12. add p to H;
13. while(result.size < k)
14. p’ �deheap H;
15. add p’ to result;
16. return result;

In the continuously monitoring phase as depicted in Figure 15, a

result boundary is used to check when an update is issued as in

Section 4.2. In Algorithm 8, the first filter (upper bound) is

applied in Line 9, which is exactly the same as Lines 2-9 in

Algorithm 7. The second filter (lower bound) is applied in Line 10,

which is similar to Line 8 in Algorithm 7, but only inserts the

objects within the mth surface equidistance line into Q2. Therefore,

the candidate set for kth NN is the difference set of the first

filtering result set and the second filtering result set (Line 12).

Consequently, the search area is the union of the chunks of all the

objects in this candidate set, which is much smaller than the

search area of the naïve approach (the area between the old result

boundary and the new expansion boundary).

Example 2: Figure 16 shows the comparison between the two

proposed approaches. In this example to monitor 3NN, we assume

that only p3 is moving. We can see that the ASI-based approach

reduces the search area remarkably by a more powerful filter (e.g.,

p5 is filtered out from candidates) and localizing the search only

inside the chunks of the candidates (e.g., p3’ and p4).

Figure 16. In comparison of two approaches, the search areas

are shaded in green (dark grey in black white printing).

Proposition 2: Let N be the size of the surface model T, m be the

total number of objects and M be the total number of chunks,

Algorithm 8’s time complexity is O(mNlog(M)/M + mlog(m)).

Proof: The major time consuming steps are applying filter 1 (Line

9) and the result updating (Line 5, 16-18). In applying filter 1, at

most m times surface distance computation by using Algorithm 6

are needed, which is O(Nlog(M)/M), while the result updating is

the same as in Algorithm 1 which is mlog(m). Thus the total time

complexity is O(mNlog(M)/M + mlog(m)). □

6. PERFORMANCE EVALUATION

6.1 Experimental Setup
In our extensive experiments, both large scale real-world and

synthetic datasets are used. The real-world surfaces are modeled

by the 10-m USGS DEM data sets downloaded from [11] which

are the same as the datasets used in previous studies in [2] and [4]:

1) Bearhead (BH) area in WA, USA which covers an area around

10.7km×14km and 2) Eagle Peak (EP) area in WY, USA with

similar size as BH. In addition, in order to analyze how the land

surface itself can affect the performance of our proposed method,

we create five synthetic surface models with the same size

(10km×10km) where we can vary roughness RA as a parameter.

The roughness of a surface has different measures and we use the

most common one: the standard deviation of the elevations away

from the mean elevation of a scan line over the surface.

For all experiments, we use a PC with Intel 6420 Dual CPU

2.13G Hz and 3.50 GB RAM. The operating system is Windows

XP SP2. To compute the exact surface distance, we use the most

recent implementation of Chen-Han algorithm in [6], and all the

algorithms are implemented in Microsoft Visual Studio 2005. In

the implementation of Algorithm 6 (Figure 13), we choose the

linear variation of Chen-Han algorithm; therefore, both the k

nearest neighbors and shortest surface paths can be provided.

6.2 System Parameters
Parameters Default Range

Number of NN k 10 2, 4, 6, 8,…, 20

Object Distribution Uniform Uniform, Gaussian

Object Density DO 0.6% 0.2, 0.4, 0.6, 0.8, 1 (%)

Object Agility a 10% 0, 5, 10, 15, 20 (%)

Object Speed v 30 m/ts 10, 20, 30, 40, 50 (m/ts)

Container Density DC 3% 1, 2, 3, 4, 5 (%)

Surface Roughness RA 10% 6, 8, 10, 12, 14 (%)

Table 1. System parameters

For our experiments, we conduct 100 CskNN queries to evaluate

the average performance of the system under different values of

parameters listed in Table 1. Each query requires continuous

monitoring for 50 timestamps. For each set of experiments, we

only vary one parameter and fix the remaining to the default

values. The performance is measured by the average query

processing time and I/O cost per timestamp. The first 6 parameters

are tested on both BH and EP while Surface Roughness RA is only

tested on synthetic data sets. Initially, data objects follow either

uniform distribution or Gaussian distribution (with mean at the

center of the land surface and standard deviation of 10% of the

maximum surface distance from the center) with varying densities

from 0.2% to 1%. The object agility indicates the overall objects

activeness, measured by the percentage of moving objects per

timestamp while the object speed indicates each object’s

activeness, measured by meters per timestamp. Please note, since

objects can move arbitrarily and do not necessarily follow the

surface shortest path, it is impossible to use the exact path to

compute the speed of every object and hence the speed is

measured by the displacement in Euclidean space per timestamp.

Container density is defined as the ratio of the number of

containers (or chunks) over the terrain size. This parameter can

also be used to estimate the ASI tree’s size (in number of nodes).

6.3 Performance Study
Since this paper is the first to address the continuous kNN

problem on surface, we compare the two approaches proposed in

this paper as competitors.

6.3.1 The Impact of k
First, we compare the performance of two algorithms by varying

the value of k from 2 to 20 on both BH and EP while using default

settings (see Table 1) for all other parameters. Figure 17 shows

the average query efficiency and number of I/O operations (as a

function of the number of retrieved surface vertices). The result

indicates that ASI based algorithm outperforms the naïve

algorithm both in query efficiency and I/O operations. As the

value of k increases, the response time of the naïve algorithm

grows at a quadratic rate due to the invocation of Chen-Han

algorithm while the response time of ASI-based algorithm

increases at a linear rate. ASI-based algorithm outperforms the

naïve algorithm by at least a factor of two for k > 4. ASI-based

algorithm also yields a better performance in I/O by an average

factor of two because the search is localized to avoid unnecessary

access to surface vertices.

Figure 17. Query Efficiency, I/O Cost vs. Value of k

6.3.2 The Impact of Object Distribution and DO
Next, we study the impact of initial object distribution. Figure 18

shows the query processing time and I/O cost on BH and EP with

objects which follow either uniform or Gaussian distributions.

Clearly, ASI-based algorithm outperforms the naïve algorithm

significantly in all cases. In addition, the difference between these

two distributions is not noticeable. In our experiments, the ASI

based algorithm has a slightly better performance for objects with

Gaussian distribution than objects with uniform distribution.

Figure 18. Query Efficiency, I/O Cost vs. Object Distribution

Figure 19 depicts the performance of the two proposed algorithm

by varying the object density from 0.2% to 1%. In general, with a

fixed value of k, both query processing time and I/O cost decrease

for both algorithms as DO increases. This is because a higher

density usually results in a smaller search area, and the overhead

for both algorithms is reduced. Furthermore, even at the highest

density, ASI-based algorithm outperforms the naïve algorithm by

a factor of five in query efficiency and a factor of two in I/O cost.

Figure 19. Query Efficiency, I/O Cost vs. DO

6.3.3 The Impact of a and v
In the next set of experiments, we study how the object

movements affect the performance. Two parameters are used to

measure the movements, which are object agility a and object

speed v. We first fix v to study the impact of a and then fix a to

study the impact of v. All other parameters are fixed to the default

settings (see Table 1).

Figure 20. Query Efficiency vs. a & v

Figure 20 (a) and (b) illustrate the impact of object agility. As the

object agility grows, both algorithms’ query processing time

increases slightly as well because the possibility to enlarge the

search area is increased. However, as Figure 20 (c) and (d)

illustrate, both algorithms are practically unaffected by object

speed because the core of both algorithms only concern whether

there are object updates rather than how far the objects move.

Clearly, ASI-based algorithm has an obvious predominance over

the naïve algorithm in all cases. The trends of I/O cost for both

algorithms are the same as query response time and hence omitted.

6.3.4 The Impact of DC
Figure 21(a) depicts the impact of container density with respect

to query efficiency. Only the performance of ASI based algorithm

is evaluated as containers are not used in the naïve algorithm. We

observe that the performance is enhanced as more containers are

created for both BH and EP.

Figure 21. Query Efficiency vs. DC & RA

6.3.5 The Impact of RA
In our final set of experiments, we vary the roughness RA over five

synthetic surface models of the same size. Regardless of the value

of RA, ASI-based algorithm keeps outperforming the naïve

algorithm at a factor of five. In addition, as shown in Figure

21(b), rougher terrains incur more query processing time. This is

reasonable because the differences among three distance measures

(i.e., Euclidean distance, Network distance and Surface distance)

are usually amplified with rougher terrains, thus the filters in both

Algorithm 1 and Algorithm 8 could probably generate a larger

search area than smooth terrains.

7. CONCLUSION AND FUTURE WORK
In this paper, for the first time, we introduce the continuous

monitoring kNN problem on surface and propose two algorithms:

a naïve algorithm which is analogous to the same problem in road

networks and a surface index (ASI) based algorithm. The

experiment results show that the ASI-based algorithm outperforms

the naïve algorithm under all circumstances by a factor of 2 to 10.

Due to the complexity of dealing with land surfaces, in this paper

we assume a simplified problem setting (pre-defined static query

points) which in turn restricted our motivating real-world

applications. However, our observations of the characteristics of

shortest paths on land surfaces are fundamental and can be

stepping stones for future research in this area addressing more

complex settings and hence more real-world applications. Some

extensions of CskNN problem with more complex settings are

straightforward. For example, to relax the “pre-defined” query

points to any arbitrary query point on surface, the ASI can be built

for every vertex, pre-computing its surface distance to all other

vertices. This combined ASI can answer arbitrary queries by

disassociating the surface space from query points, very much like

the work in recent literature (e.g., [9]) that utilizes this idea on the

road network. Our future plan includes further studying these

complex settings, where queries move arbitrarily.

8. ACKNOWLEDGMENTS
This research has been funded in part by NSF grants IIS-0238560

(PECASE), IIS-0534761 and CNS-0831505 (CyberTrust), the

NSF Center for Embedded Networked Sensing (CCR-0120778)

and in part from the METRANS Transportation Center, under

grants from USDOT and Caltrans. Any opinions, findings, and

conclusions or recommendations expressed in this material are

those of the author(s) and do not necessarily reflect the views of

the National Science Foundation.

REFERENCES
[1] J. Chen and Y. Han: Shortest paths on a polyhedron. 6th

ACM Symp. Comput. Geometry, pages 360–369, 1990.

[2] K. Deng, X. Zhou, H. T. Shen, K. Xu, X. Lin: Surface k-NN

Query Processing. ICDE 2006.

[3] K. Deng, X. Zhou, H.T. Shen, Q. Liu, K. Xu and X. Lin: A

Multi-resolution Surface Distance Model for k-NN Query

Processing. The VLDB Journal, Volume 17, August 2008.

[4] C. Shahabi, L. Tang and S. Xing: Indexing Land Surface for

Efficient kNN Query. PVLDB Volume 1(1), 2008.

[5] E. W. Dijkstra: A note on two problems in connection with

graphs. Numeriche Mathematik, 1:269–271, 1959.

[6] B. Kaneva and J.O’Rourke: An implementation of Chen &

Han’s shortest paths algorithm. Proc. of 12th Canadian Conf.

on Comput. Geom, 2000.

[7] K. Mouratidis, M. Yiu, D. Papadias and N. Mamoulis:

Continuous nearest neighbor monitoring in road networks.

VLDB 2006.

[8] D. Wagner, T. Willhalm, C. Zaroliagis: Geometric containers

for efficient shortest-path computation. J. Exp. Algorithmics

[9] H. Samet, J. Sankaranarayanan,H. Alborzi: Scalable network

distance browsing in spatial databases. SIGMOD 2008.

[10] D. Papadias, J. Zhang, N. Mamoulis, Y. Tao: Query

Processing in Spatial Network Databases. VLDB 2003.

[11] Http://data.geocomm.com.

[12] A. Guttman: R-trees: a Dynamic Index Structure for Spatial

Searching: SIGMOD 1984.

[13] H. Samet: Foundations of Multidimensional and Metric Data

Structures 2005.

[14] N. Roussopoulos, S. Kelley, and F. Vincent: Nearest

neighbor queries. SIGMOD 1995.

[15] F. Korn, and S. Muthukrishnan: Influence Sets Based on

Reverse Nearest Neighbor Queries. SIGMOD 2000.

[16] Y. Tao, D. Papadias, and X. Lian: Reverse kNN search in

arbitrary dimensionality. VLDB 2004.

[17] Y. Tao and D. Papadias: Time-parameterized queries in

spatio-temporal databases. SIGMOD 2002.

[18] Y. Tao, D. Papadias and Q. Shen: Continuous Nearest

Neighbor Search. VLDB 2002.

[19] C. Shahabi, M. R. Kolahdouzan and M. Sharifzadeh: A road

network embedding technique for k-nearest neighbor search

in moving object databases. ACM-GIS 2002.

[20] M. Kolahdouzan and C. Shahabi: Voronoi-based k nearest

neighbor search for spatial network databases. VLDB 2004.

[21] X. Yu, K. Q. Pu, and N. Koudas : Monitoring k-nearest

neighbor queries over moving objects. ICDE, 2005.

